NOS1-dependent negative feedback regulation of the epithelial sodium channel in the collecting duct.
نویسندگان
چکیده
With an increase in urine flow there is a significant increase in shear stress against the renal epithelium including the inner medullary collecting duct, resulting in an increase in nitric oxide (NO) production. The mechanisms of the shear stress-mediated increases in NO are undetermined. Previous studies found that shear stress increases epithelial sodium channel (ENaC) open probability and endothelin (ET)-1 production in an ENaC-dependent mechanism in the collecting duct (CD). Given that ET-1 stimulates NO production in the CD, we hypothesized that shear stress-induced NO production is downstream of shear stress-induced ENaC activation and ET-1 production in a negative feedback loop. We determined that nitric oxide synthase 1 (NOS1) and NOS3 contribute to shear stress-mediated NO production in the CD, that is attenuated by low doses of the ENaC inhibitors amiloride and benzamil. Moreover, ETB receptor blockade significantly blunted the shear stress-mediated NO production. We further elucidated whether mice lacking NOS1 in the collecting duct (CDNOS1KO) have an impaired renal ET-1 system in the CD. Although urinary ET-1 production and inner medullary ET receptor expression were similar between flox control and CDNOS1KO mice, acute ET-1 treatment significantly reduced ENaC open probability in CDs from flox mice but not CDNOS1KO mice compared with basal. Basal ENaC activity in CDs was similar between the genotypes. We conclude that during acute shear stress across the CD, ENaC acts in a negative feedback loop to stimulate NO production in an ETB/NOS1-dependent manner resulting in a decrease in ENaC open probability and promoting natriuresis.
منابع مشابه
Renal collecting duct NOS1 maintains fluid-electrolyte homeostasis and blood pressure.
Nitric oxide is a pronatriuretic and prodiuretic factor. The highest renal NO synthase (NOS) activity is found in the inner medullary collecting duct. The collecting duct (CD) is the site of daily fine-tune regulation of sodium balance, and led us to hypothesize that a CD-specific deletion of NOS1 would result in an impaired ability to excrete a sodium load leading to a salt-sensitive blood pre...
متن کاملRegulation of the epithelial Na+ channel by endothelin-1 in rat collecting duct.
We used patch-clamp electrophysiology to investigate regulation of the epithelial Na+ channel (ENaC) by endothelin-1 (ET-1) in isolated, split-open rat collecting ducts. ET-1 significantly decreases ENaC open probability by about threefold within 5 min. ET-1 decreases ENaC activity through basolateral membrane ETB but not ETA receptors. In rat collecting duct, we find no role for phospholipase ...
متن کاملCollecting Duct Nitric Oxide Synthase 1ß Activation Maintains Sodium Homeostasis During High Sodium Intake Through Suppression of Aldosterone and Renal Angiotensin II Pathways
BACKGROUND During high sodium intake, the renin-angiotensin-aldosterone system is downregulated and nitric oxide signaling is upregulated in order to remain in sodium balance. Recently, we showed that collecting duct nitric oxide synthase 1β is critical for fluid-electrolyte balance and subsequently blood pressure regulation during high sodium feeding. The current study tested the hypothesis th...
متن کاملThe circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes.
The circadian clock protein period 1 (Per1) contributes to the regulation of expression of the α subunit of the renal epithelial sodium channel at the basal level and in response to the mineralocorticoid hormone aldosterone. The goals of the present study were to define the role of Per1 in the regulation of additional renal sodium handling genes in cortical collecting duct cells and to evaluate...
متن کاملVasopressin regulation of sodium transport in the distal nephron and collecting duct.
Arginine vasopressin (AVP) is released from the posterior pituitary gland during states of hyperosmolality or hypovolemia. AVP is a peptide hormone, with antidiuretic and antinatriuretic properties. It allows the kidneys to increase body water retention predominantly by increasing the cell surface expression of aquaporin water channels in the collecting duct alongside increasing the osmotic dri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 308 3 شماره
صفحات -
تاریخ انتشار 2015